
Continuous-Time Diffusion Policies for Visuomotor
Control:

A Stochastic Calculus Perspective

Angikar Ghosal , Nils Kuhn
Professor: Jose Blanchet

Management Science and Engineering 322 – Stochastic Calculus and Control

Abstract

Recent advancements in visuomotor control have been driven by Diffusion Policies,
which model the action distribution as a discrete-time denoising process. In this
project, we reinterpret these methods through the rigorous lens of continuous-
time stochastic calculus, formulating them as controlled stochastic differential
equations (SDEs). We rigorously define, analyze, and compare three distinct classes
of SDEs—Variance Preserving (VP), Variance Exploding (VE), and Critically
Damped Langevin Dynamics (CLD)—and their corresponding numerical solvers.
For each process, we derive the forward and reverse-time SDEs, the probability flow
ODE, and the associated score-matching objective for training a neural network
policy. Our experiments on the PushT manipulation benchmark demonstrate that
the choice of stochastic process fundamentally alters control performance. We find
that the VP-SDE significantly outperforms VE and CLD formulations, achieving
higher average goal coverage and smoother trajectories.

1 Mathematical Framework

Let (Ω,F ,P) be a probability space with a filtration {Ft}t∈[0,T]. A visuomotor policy is a conditional
probability distribution π(a |o) over an action space A ⊂ RD conditioned on an observation o ∈ O.
In this work, we model this distribution using a generative process defined by a controlled stochastic
differential equation. The core idea is to transform a complex, unknown data distribution (expert
actions) into a simple, tractable prior distribution (e.g., Gaussian noise) via a forward SDE, and then
learn to reverse this process to generate new data. The equation of the forward process in our action
space is given as:

dat = f(at, t) dt+ g(t) dWt, a0 ∼ π(· |o), (1)

The backwards process can then be derived as:

dat =
[
f(at, t)− g(t)2∇at

log pt(at)
]
dt+ g(t) dW̄t, (2)

The definition of the Forward and Reverse Processes as Itô diffusion is given in Appendix A. The
reverse SDE (2) can be interpreted from a control theory perspective. (Tzen and Raginsky [2019],
Berner et al. [2022]) Consider the uncontrolled process dxt = f(xt, t) dt + g(t) dW̄t. The term
u(at, t) = −g(t)2∇at

log pt(at) acts as a feedback control law that steers the state at towards regions
of high probability under the target distribution. Learning the score function sθ = ∇at

log pt(at)
is thus equivalent to learning an optimal control policy that minimizes the Kullback–Leibler (KL)
divergence between the trajectory distribution of the controlled process and that of the time-reversed
expert data process. Furthermore, the evolution of the density pt(a) is governed by the Fokker-Planck
equation, and the reverse SDE provides the control required to shape this density from a simple prior
pT into the complex data distribution p0.

2 Stochastic Processes for Control

We formulate the visuomotor policy as a time-reversal of a forward diffusion process. We investigate
three specific SDE classes. For each, we define the forward dynamics, the reverse generative process,
and the specific loss function L(θ) derived from score matching. (Hyvärinen [2005], Vincent [2011])

2.1 Variance Preserving (VP) SDE

This process is the continuous-time limit of the DDPM schedule. It creates a mean-reverting process
that keeps the data variance bounded, ensuring stable training gradients. The detailed mathematical
derivations are in in Appendix B.
Definition 1 (VP Forward SDE). Let β(t) be a positive noise schedule. The forward process is an
Ornstein-Uhlenbeck process:

dat = −
1

2
β(t)at dt+

√
β(t) dWt (3)

The transition kernel p0t(at|a0) is Gaussian with mean µt = a0e
− 1

2

∫ t
0
β(s)ds and variance Σt =

(1− e−
∫ t
0
β(s)ds)I.

Training Objective: By parameterizing the score network to predict the added noise ϵ, the loss
function simplifies to a weighted mean-squared error:

LV P (θ) = Et,a0,ϵ

[
∥ϵ− ϵθ(

√
ᾱta0 +

√
1− ᾱtϵ, t,o)∥2

]
(4)

Noise Schedule: In our experiments, we use the cosine squared noise schedule for β(t) as formulated
by Nichol and Dhariwal [2021].

2.2 Variance Exploding (VE) SDE

Common in Score-Based Generative Models (SGM), this process has no drift term. The variance
grows ("explodes") as t→ T . The detailed mathematical derivations are in in Appendix C.

2

Definition 2 (VE Forward SDE). Let σ(t) be an increasing function. The process is defined as:

dat =

√
d[σ2(t)]

dt
dWt, a0 ∼ πdata (5)

Conditioned on a0, the state is at ∼ N (a0, σ
2(t)I).

Training Objective: Due to the unbounded variance, the score-matching loss requires a weighting
function λ(t) = σ2(t) to stabilize optimization:

LV E(θ) = Et,a0,at

[
σ2(t) ∥sθ(at, t,o)−∇at

log pt(at |a0)∥2
]
. (6)

The VE SDE just adds noise to the expert (target) actions a0. At inference time, however, a0 is
unknown. In practice, we normalize expert actions so that E[a0] ≈ 0, and choose σ(T) large
compared to the typical action magnitude, i.e. ∥a0∥ ≪ σ(T) for most samples. Under these
assumptions, the marginal pT (a) is well approximated by a zero-mean Gaussian,

pT (a) ≈ N
(
0, σ2(T)I

)
,

and we therefore initialize the reverse-time process by sampling aT ∼ N
(
0, σ2(T)I

)
as a simple

prior.

Noise Schedule: In our experiments, we use the logarithmic noise schedule for σ(t) as formulated
by Song et al. [2021b].

2.3 Critically Damped Langevin Dynamics (CLD)

This second-order process introduces momentum p ∈ RD, acting on the phase space (a,p). It
models physical concepts like inertia and friction, providing a potentially powerful inductive bias for
generating smooth robot motions. The detailed mathematical derivations are in in Appendix D.
Definition 3 (CLD Forward SDE). The system is governed by a coupled SDE in phase space:

dat = pt dt (7)

dpt = −γpt dt+
√
2γ dWt (8)

Training Objective: We derived the marginal transition kernel for position at (see Appendix D) to
be Gaussian with variance σ2

CLD(t). This allows us to use a score-prediction objective similar to VE:

LCLD(θ) = Et,a0,at

[
σ2(t) ∥sθ(at, t,o)−∇at log pt(at |a0)∥2

]
. (9)

The generative process is different. Here, the learned score sθ acts as a control force that steers the
particle.

dat = pt dt, (10)

dpt = [−γpt + λ(t)sθ(at, t,o)] dt+
√

2γ dWt, (11)

where λ(t) is a time-dependent scaling factor for the control input. In practice, as mentioned
by Dockhorn et al. [2022], the virtual time is flipped such that the system can be integrated forward
in time from t = 0 to t = T , starting from prior samples a0 ∼ N (0, σ2

aI) and p0 ∼ N (0, σ2
pI).

Noise Schedule: The noise schedule of the CLD SDE is driven by γ. In our experiments, we chose
the constant γ = 3.

3 Experimental Protocol

3.1 Diffusion Policies on PushT

We evaluate our methods on the PushT tabletop manipulation benchmark, where a planar end-effector
must push an object into a target “T”-shaped configuration. The task involves contact-rich interactions,
in which small changes in actions can produce qualitatively different object motions (e.g., sticking
vs. sliding, different rotation outcomes). This makes the underlying dynamics highly non-linear and

3

1 2 3 4

5 6 7 8

Figure 1: Successful PushT rollout: the end-effector pushes the T-shaped object from the initial pose
to the green goal configuration.

discontinuous. The overall goal is to push the "T" from its initial position to the green goal position.
Figure 1 visualizes a successful example of our experiments.

PushT is both challenging and informative for robotics: (i) it exhibits hybrid contact dynamics and
frictional effects typical of real-world manipulation; (ii) small errors accumulate over a multi-step
horizon, making long-horizon consistency critical; and (iii) success requires tight coupling between
perception and control. As such, it provides a compact but demanding benchmark for assessing how
different diffusion SDE formulations affect policy quality in visuomotor control.

3.1.1 Observation Space

At each time step t, the observation is ot = (I1,t, I2,t, st), with:

• I1,t, I2,t ∈ R3×84×84: the last two RGB images from a fixed camera capturing the robot,
the t-shaped block and the target configuration.

• st ∈ R2: the robot position in the 2-dimensional state space.

The image provides global scene context and object-goal relations, while the 2D state offers precise
localization of the end-effector. This combination stresses the policy’s ability to fuse high-dimensional
visual input with concise proprioceptive information.

3.1.2 Action Space

The policy outputs a sequence of future actions at each step at ∈ R2×H , where each column at,i ∈ R2

(for i ∈ {1, 2, ...,H} denotes the position difference for the i-th step-ahead in the horizon, similar to
Zhao et al. [2023]. Similar to Chi et al. [2025], we will use H = 8.

This sequence-level representation enables the model to directly encode temporal correlations and
multi-step strategies within a single diffusion sample, and it makes the quality of the learned reverse
SDE particularly visible through the coherence and smoothness of the predicted action trajectories.

3.1.3 Diffusion Policy Architecture

Our policy adopts a two-stage architecture consisting of a visual backbone and a diffusion-based
action decoder. The observation ot is first encoded by a ResNet-18 vision backbone (≈ 22M
parameters), which preprocesses the RGB images. The resulting visual features are concatenated with
an embedding of the 2D robot state st, yielding a compact contextual representation that conditions
the policy.

Conditioned on this context, a Diffusion Transformer (≈ 9M parameters). serves as the action decoder.
The noisy action sequence ãτ ∈ R2×H at diffusion time τ is tokenized along the horizon (8 tokens,
one per future step), embedded into a latent space, and augmented with temporal positional encodings.
Several layers of self-attention operate over this token sequence to model temporal dependencies,
while the observation features and diffusion time embedding condition the transformer.

4

Only the Diffusion Transformer is trained to denoise the action sequence under the chosen SDE. This
hierarchical design, combining ResNet-18 for high-capacity visual encoding with a comparatively
lightweight diffusion transformer for sequence-level action generation, mirrors common practice in
state-of-the-art autonomous robot control (Black et al. [2024], Kim et al. [2024]). Consequently, it
provides an appropriate and controlled setting for isolating and analyzing the impact of different SDE
formulations on the quality and consistency of the learned action distribution on PushT.

3.2 Phase 1: Training the Score Network

The first phase of the experiment is to train the neural network sθ (or its noise-prediction counterpart
ϵθ) using the expert demonstration dataset. The network learns to predict the noise that corrupts a
clean expert action. This process is entirely offline and does not involve running the robot.

Algorithm 1 Training a Continuous-Time Diffusion Policy

1: Initialize network parameters θ.
2: repeat
3: Sample an expert trajectory chunk from the dataset. Let a0 ∈ RD be the ground-truth action

sequence. Let o be the observation at the start of the sequence.
4: Sample a continuous time t ∼ U(0, T).
5: Sample a noise vector ϵ ∼ N (0, ID).
6: Corrupt the clean action a0 to create a noisy sample at using the analytical formula (forward

kernel) for the chosen SDE:
• VP: at ←

√
ᾱta0 +

√
1− ᾱtϵ

• VE: at ← a0 + σ(t)ϵ

• CLD: at ← a0 + σCLD(t)ϵ

7: Feed (at, t,o) into the network to get its prediction (e.g., ϵθ(at, t,o)).
8: Compute the loss by comparing the network’s prediction to the true target. For noise-

predicting networks, the loss is L(θ) = ∥ϵ − ϵθ∥2. For score-predicting networks, it is the
corresponding weighted score-matching loss.

9: Update parameters θ using a gradient descent step: θ ← θ − η∇θL(θ).
10: until convergence

3.3 Phase 2: Generating Actions at Inference Time

After training, the network is frozen and deployed to control the robot. When the robot provides a
new observation o, the policy generates an action by starting with pure noise and iteratively denoising
it using the trained network. This is the reverse process.

Algorithm 2 Action Generation at Inference Time (for VP/VE SDEs)

1: Input: Trained network sθ (or ϵθ), current robot observation o, number of integration steps N .
2: Output: A clean action sequence a0.
3: Step 1: Initialization. Sample a random action from the prior distribution: aT ∼ N (0, I).
4: Step 2: Discretization. Define the time schedule for denoising: T = t0, t1, . . . , tN = 0.
5: Let acurrent ← aT .
6: for i = 0 to N − 1 do ▷ Iterate from high noise to low noise
7: Let current time be ti.
8: Step 3: Prediction. Query the network with the current noisy action, time, and observation

to get the predicted score or noise. E.g., ϵpred = ϵθ(acurrent, ti,o).
9: Step 4: Update. Take one small step "backwards in time" using a numerical solver to get a

slightly cleaner action, anext. This step uses the prediction from the network to guide the update.
10: (The specific update formula depends on the SDE and solver, as detailed later).
11: acurrent ← anext.
12: return acurrent (which is now the fully denoised action a0).

5

3.4 Numerical Integration Schemes

To generate an action, we numerically solve the generative differential equation by discretizing the
time interval [0, T] into N steps: T = t0, t1, . . . , tN = 0. The update rules for moving from a state
ati at the current time ti to a new state ati+1

at the next time ti+1 depend on the SDE formulation
and the chosen solver. For VP and VE SDEs, we integrate backward in time, so the time step
∆t = ti+1 − ti is negative. For CLD, we integrate forward, so ∆t is positive.

3.4.1 Euler Method (ODE Solver)

The general form of the forward Euler update is:

ati+1
= ati + F (ati , ti)(ti+1 − ti)

The specific form of the velocity field F (at, t) is (Song et al. [2021a], Karras et al. [2022]):

• For VP SDE: The network ϵθ(at, t,o) predicts the noise.

FVP(at, t) = −
1

2
β(t)

[
at −

ϵθ(at, t,o)√
1− ᾱt

]
• For VE SDE: The network sθ(at, t,o) predicts the score. Let g(t)2 = d[σ2(t)]

dt .

FVE(at, t) = −
1

2
g(t)2sθ(at, t,o)

• For CLD (Deterministic): We solve the coupled system of first-order ODEs by removing
the noise term from the generative SDE. The state is (at,pt).

ati+1 = ati + pti(ti+1 − ti)

pti+1
= pti + [−γpti + sθ(ati , ti,o)] (ti+1 − ti)

3.4.2 Heun’s Method (ODE Solver)

The general form is a two-step predictor-corrector update:

ã = ati + F (ati , ti)(ti+1 − ti)

ati+1 = ati +
ti+1 − ti

2
[F (ati , ti) + F (ã, ti+1)]

The function F is identical to the one defined for the Euler Method for both the VP and VE SDEs.

3.4.3 Euler-Maruyama Method (SDE Solver)

• For VP and VE SDEs (Backward Integration): The update rule is

ati+1
= ati + µ(ati , ti)(ti+1 − ti) + σ(ti)

√
ti − ti+1 z, z ∼ N (0, I)

The specific drift µ and diffusion σ are:
– For VP SDE:

µVP(at, t) = −
1

2
β(t)at +

β(t)√
1− ᾱt

ϵθ(at, t,o)

σVP(t) =
√
β(t)

– For VE SDE:
µVE(at, t) = −g(t)2sθ(at, t,o)

σVE(t) = g(t) =

√
d[σ2(t)]

dt

• For CLD (Forward Integration): We integrate the generative SDE forward in time. The
update rule for the coupled system is:

ati+1 = ati + pti(ti+1 − ti)

pti+1
= pti + [−γpti + sθ(ati , ti,o)] (ti+1 − ti) +

√
2γ
√

ti+1 − ti z

6

Figure 3: Smoothed Training Loss for VP-SDE

4 Results

Figures 3 and 5 highlight that the choice of SDE strongly affects both the scale and dynamics of
optimization.

Because the loss magnitude depends on the noise parametrization, the absolute values must be
interpreted with care: the training losses obtained with VE-SDE and CLD are orders of magnitude
larger than those of VP-SDE. This scale difference is consistent with the substantially larger noise
standard deviations typically induced by the VE formulation, which increases the expected denoising
error and thus inflates the loss.

Beyond scale, the learning-curve shapes reveal qualitatively different training behavior. For VP-SDE,
the training loss decreases rapidly early in training and then gradually plateaus, while the validation
loss initially improves but subsequently increases, indicative of overfitting. In contrast, VE-SDE and
CLD do not exhibit a comparable late-stage deterioration in validation loss over the same training
horizon, suggesting that these settings did not reach the same degree of saturation on the validation
set.

Overall, our experiments indicate that the VP-SDE configuration is easier to optimize under the
current training setup, while VE-SDE and CLD may require additional hyperparameter tuning
(e.g., learning rate, weighting, or noise schedule) to reach their best performance. An alternative
interpretation is that the VE/CLD formulations present a more challenging learning problem for the
model in this diffusion-policy setting, motivating further investigation into when and why VP-style
parametrizations yield more favorable optimization behavior.

Figure 2: Smoothed Training Loss for VE-SDE and CLD

7

Figure 5: Smoothed Training Loss for VP-SDE

Figure 4: Smoothed Training Loss for VE-SDE and CLD

4.1 Quantitative Performance

Table 1 summarizes the performance across all configurations. The Variance Preserving (VP) SDE
significantly outperforms the other formulations, achieving high success rates regardless of the solver
used.

Table 1: Average Goal Coverage (Success Rate) on PushT (N = 50 episodes). VP-SDE demonstrates
superior robustness, while VE-SDE shows a strong dependence on stochastic sampling.

Deterministic (ODE) Stochastic (SDE)
SDE Formulation Euler Heun Euler-Maruyama
Variance Preserving (VP) 0.780 0.786 0.802
Variance Exploding (VE) 0.108 0.105 0.524
Critically Damped (CLD) 0.405 – 0.311

Robustness of VP-SDE: The VP formulation is remarkably robust to the choice of solver, with
results clustering tightly around 0.79. The mean-reverting drift of the Ornstein-Uhlenbeck process
ensures that the state remains bounded, creating a well-conditioned vector field. Consequently,
higher-order corrections (Heun) or stochastic noise injection (EM) provide negligible benefits over a
simple Euler step.

8

Stochastic Correction in VE-SDE: A striking result is the massive performance gap in VE-SDE
between deterministic solvers (≈ 0.10) and the stochastic Euler-Maruyama solver (0.52). The
deterministic ODE integrators fail almost completely. We attribute this to the unbounded nature of
the VE variance. As t → 0, the score norm grows large; small approximation errors in the neural
network can cause a deterministic trajectory to diverge permanently from the data manifold.

However, the Euler-Maruyama solver injects Gaussian noise at every step. This noise acts as a
stochastic corrector, kicking the state out of spurious local minima and back toward high-probability
regions. For variance-exploding processes, stochasticity appears essential for compensating for score
estimation errors.

The deterministic (ODE) samplers often generated very slow motions, with predicted actions remain-
ing close to the agent’s current state. One plausible explanation is the distributional mismatch in the
initialization of the reverse process: during training, the initial action samples are centered around the
next action, whereas at test time they are initialized around the current state. While this shift should
be small, it may still bias early denoising steps toward conservative action updates.

Instability in CLD: For the Critically Damped system, the deterministic Euler solver (0.405)
outperforms the stochastic solver (0.311). Since the CLD formulation controls momentum, the
resulting trajectories are naturally prone to oscillation ("jitter"). In this regime, the injection of
additional noise via Euler-Maruyama exacerbates these oscillations, destabilizing the control. The
deterministic solver, by ignoring the diffusion term, effectively smooths the trajectory, resulting in
marginally better performance.

5 Conclusion

In this project, we re-examined Diffusion Policies for visuomotor control through the lens of controlled
stochastic differential equations. We systematically derived the forward and reverse dynamics for
three distinct processes: Variance Preserving (VP), Variance Exploding (VE), and Critically Damped
Langevin Dynamics (CLD). By training these models on the PushT benchmark and evaluating them
with various numerical solvers, we established a clear hierarchy of performance for this contact-rich
task.

Our results highlight a critical insight from stochastic control: while all three formulations theoreti-
cally target the same data distribution in the limit of perfect score estimation, the properties of the
underlying SDEs dictate the difficulty of the learning problem and the conditioning of the sampling
process. The VP-SDE, with its mean-reverting Ornstein-Uhlenbeck structure, ensures bounded state
variance and stable gradients, leading to superior and solver-robust performance. In contrast, the
unbounded variance of VE-SDE requires stochastic correction to function, while the second-order
dynamics of CLD introduce oscillations that degrade precision. For practical robotic control, the
stability provided by the VP formulation appears to be the dominant factor for success.

9

References
Brian DO Anderson. Reverse-time diffusion equation models. Stochastic Processes and their

Applications, 12(3):313–326, 1982.

Julius Berner, Philipp Grohs, Gitta Kutyniok, and Philipp Petersen. An optimal control perspective
on diffusion-based generative modeling. arXiv preprint arXiv:2211.01364, 2022.

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo Fusai,
Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke, Sergey
Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi, James
Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-language-
action flow model for general robot control, 2024. URL https://arxiv.org/abs/2410.24164.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In Advances in Neural Information Processing Systems, 2018.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion. The
International Journal of Robotics Research, 44(10-11):1684–1704, 2025.

Tim Dockhorn, Arash Vahdat, and Karsten Kreis. Score-based generative modeling with critically-
damped langevin diffusion, 2022. URL https://arxiv.org/abs/2112.07068.

Aapo Hyvärinen. Estimation of non-normalized statistical models by score matching. Journal of
Machine Learning Research, 6:695–709, 2005.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. In Advances in Neural Information Processing Systems, 2022.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair, Rafael
Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Benjamin
Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn. Openvla:
An open-source vision-language-action model, 2024. URL https://arxiv.org/abs/2406.
09246.

Alex Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models, 2021. URL
https://arxiv.org/abs/2102.09672.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. In Interna-
tional Conference on Learning Representations, 2021a.

Yang Song, Jascha Sohl-Dickstein, Diederik P. Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations, 2021b. URL
https://arxiv.org/abs/2011.13456.

Belinda Tzen and Maxim Raginsky. Theoretical guarantees for sampling and inference in generative
models with latent diffusions. In Conference on Learning Theory, 2019.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Tony Z Zhao, Vikash Kumar, Sergey Levine, and Chelsea Finn. Learning fine-grained bimanual
manipulation with low-cost arms. In Robotics: Science and Systems, 2023.

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2112.07068
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2102.09672
https://arxiv.org/abs/2011.13456

Appendix

A Mathematical Framework

A.1 The Forward and Reverse Processes

Definition 4 (Forward Process SDE). A forward process is an Itô diffusion {at}t∈[0,T] that transforms
a data sample a0 ∼ π(· |o) into a sample from a simple prior distribution pT . It is defined by the
SDE:

dat = f(at, t) dt+ g(t) dWt, a0 ∼ π(· |o), (12)

where Wt is a standard D-dimensional Wiener process adapted to {Ft}, f : RD × [0, T]→ RD is
the drift vector, and g : [0, T]→ R is the scalar diffusion coefficient. Let pt(a) denote the marginal
probability density of at.

The key to reversing this process lies in the score function,∇a log pt(a), which points in the direction
of maximal increase of the log-probability density at time t. A remarkable result from stochastic
calculus Anderson [1982] provides a way to express the dynamics of the time-reversed process using
this score.

Theorem 1 (Reverse-Time SDE). Let {at}t∈[0,T] satisfy the forward SDE (1). Under mild regularity
conditions, the reverse-time process is also a diffusion process. It can be described in two equivalent
ways:

1. (Time-flipped variable) Let τ = T − t and define a new process ãτ = aT−τ . This process satisfies
the SDE:

dãτ =
[
−f(ãτ , T − τ) + g(T − τ)2∇ãτ

log pT−τ (ãτ)
]
dτ + g(T − τ) dW̃τ , (13)

where W̃τ is a standard Wiener process running forward in τ ∈ [0, T].

2. (Backward-in-time) The original process, viewed backward in time t ∈ [T, 0], satisfies:

dat =
[
f(at, t)− g(t)2∇at

log pt(at)
]
dt+ g(t) dW̄t, (14)

where dW̄t is a reverse-time standard Wiener process increment.

Justification and Neural Network Approximation. The intuition behind this theorem comes
from the Fokker-Planck equation, which describes the evolution of the density pt. The term
−g(t)2∇at

log pt(at) is precisely the drift correction required to reverse the entropy production
of the forward process. However, the true score, ∇at

log pt(at |o), is intractable to compute because
it requires knowing the marginal density pt(at |o) =

∫
pt(at|a0)pdata(a0|o)da0, which involves an

integral over the entire unknown data distribution.

A.2 The Probability Flow ODE

For every SDE, there exists a corresponding deterministic process described by an ordinary differential
equation (ODE) whose trajectories evolve such that their marginal densities {pt(a)} match those of
the SDE. (Chen et al. [2018])

Definition 5 (Probability Flow ODE). The deterministic process {at}t∈[0,T] sharing the same
marginals as the SDE in Eq. (1) is given by:

dat
dt

= f(at, t)−
1

2
g(t)2∇at

log pt(at). (15)

For generation, we solve the reverse-time version of this ODE, substituting the learned score sθ:

dat
dt

= f(at, t)−
1

2
g(t)2sθ(at, t,o). (16)

This ODE is integrated backward from t = T to t = 0, starting from the same prior sample aT ∼ pT .
This provides a deterministic method for sampling. (Song et al. [2021a])

11

Justification. The evolution of pt under the SDE (1) is given by the Fokker-Planck equation:
∂pt

∂t = −∇· (fpt)+ 1
2g(t)

2∇2pt. The velocity field of the ODE (5) is chosen such that the continuity
equation ∂pt

∂t = −∇ · (dat

dt pt) yields the same evolution for pt. The factor of 1/2 arises from this
correspondence, effectively averaging out the stochastic fluctuations. (Karras et al. [2022])

B Derivations for the Variance Preserving SDE

B.0.1 Discrete noising

In diffusion-based learning, this SDE is the continuous-time analogue of the discrete forward noising
process used in DDPM. In discrete time, with a step index k ∈ {0, . . . ,K − 1} and per-step noise
variances βk ∈ (0, 1), the forward process is

ak+1 =
√
1− βk ak +

√
βk ϵk, ϵk ∼ N (0, I).

It is clear that if the schedule satisfies ᾱK :=
∏K−1

k=0 (1− βk) ≈ 0 (e.g., βK ≈ 1), the final state aK
is approximately Gaussian, independent of the initial data.

We can rewrite the update as

∆ak := ak+1 − ak =
(√

1− βk − 1
)
ak +

√
βk ϵk.

To obtain a continuous-time limit, we introduce a time step ∆t and a rate function β(t) such that
βk ≈ β(tk)∆t with tk = k∆t. For small βk we use the Taylor expansion√

1− βk = 1− 1

2
βk + o(βk),

so that
∆ak ≈ −

1

2
βkak +

√
βk ϵk.

Writing ϵk = ∆Wk/
√
∆t with Wiener increments ∆Wk ∼ N (0,∆t I), we obtain

∆ak ≈ −
1

2
β(tk)ak ∆t+

√
β(tk)∆Wk.

Dividing by ∆t and taking the limit ∆t→ 0 yields the VP SDE and justifies the choice of f(at, t)
and g(t).

dat = −
1

2
β(t)at dt+

√
β(t) dWt.

B.0.2 Derivation of the Forward Transition Kernel

This is a linear SDE. To find its solution and thus the transition kernel pt(at |a0), we use an integrating
factor. Let α(t) = 1

2

∫ t

0
β(s)ds. Define a new process Yt = eα(t)at. Applying Itô’s lemma for a

product:

dYt =

(
d

dt
eα(t)

)
at dt+ eα(t) dat

=
1

2
β(t)eα(t)at dt+ eα(t)

(
−1

2
β(t)at dt+

√
β(t) dWt

)
=

(
1

2
β(t)eα(t)at −

1

2
β(t)eα(t)at

)
dt+ eα(t)

√
β(t) dWt = eα(t)

√
β(t) dWt.

Integrating from 0 to t gives Yt − Y0 =
∫ t

0
eα(s)

√
β(s) dWs. Since Y0 = eα(0)a0 = a0, we solve

for at = e−α(t)Yt:

at = e−α(t)a0 + e−α(t)

∫ t

0

eα(s)
√

β(s) dWs = e−α(t)a0 +

∫ t

0

e−(α(t)−α(s))
√
β(s) dWs.

This shows at conditioned on a0 is a Gaussian random variable.

12

• Mean: E[at |a0] = e−α(t)a0 = e−
1
2

∫ t
0
β(s)dsa0.

• Variance: Using Itô isometry, the variance is
(∫ t

0
e−2(α(t)−α(s))β(s) ds

)
I. Let v(s) =

−2(α(t)− α(s)) = −
∫ t

s
β(u)du. Then dv = β(s)ds. The integral becomes

∫ s=t

s=0
evdv =

[ev]s=t
s=0 = [e−

∫ t
s
β(u)du]s=t

s=0 = e0 − e−
∫ t
0
β(u)du = 1− e−

∫ t
0
β(s)ds.

Thus, letting ᾱt = exp
(
−
∫ t

0
β(s)ds

)
, the transition kernel is exactly: pt(at |a0) =

N (at;
√
ᾱta0, (1− ᾱt)I).

• Generative Models:
– Reverse SDE: Integrated from t = T → 0:

dat =

[
−1

2
β(t)at − β(t)sθ(at, t,o)

]
dt+

√
β(t) dW̄t.

– Probability Flow ODE: Integrated from t = T → 0:

dat
dt

= −1

2
β(t) [at + sθ(at, t,o)] .

B.0.3 Derivation of the VP Training Objective

The goal is to train a neural network sθ to match the true score, ∇at
log pt(at |o). Minimizing the

score-matching loss L(θ) = Et,at [∥sθ(at, t) − ∇at log pt(at)∥2] is equivalent to minimizing the
KL divergence between the generative and data distributions. Since the true score is intractable, we
instead match the score of the tractable conditional distribution pt(at|a0). The conditional score is
∇at log pt(at |a0) = −(at −

√
ᾱta0)/(1− ᾱt).

A sample at can be written via the reparameterization trick: at =
√
ᾱta0+

√
1− ᾱtϵ for ϵ ∼ N (0, I).

Rearranging gives ϵ = (at −
√
ᾱta0)/

√
1− ᾱt. Substituting this into the score expression reveals a

key relationship:

∇at log pt(at |a0) = −
√
1− ᾱtϵ

1− ᾱt
= − ϵ√

1− ᾱt
.

This shows that knowing the conditional score is equivalent to knowing the noise ϵ that was added
to a0 to create at. Instead of training sθ to predict the score, it is more stable and convenient to
reparameterize the network to predict the noise itself. We define a network ϵθ(at, t,o) such that our
score estimate is sθ(at, t,o) = − ϵθ(at,t,o)√

1−ᾱt
. Substituting this into a weighted score matching loss

yields:

L(θ) = Et,a0,ϵ

[∥∥∥∥−ϵθ(at, t,o)√
1− ᾱt

−
(
− ϵ√

1− ᾱt

)∥∥∥∥2
]

= Et,a0,ϵ

[
1

1− ᾱt
∥ϵ− ϵθ(

√
ᾱta0 +

√
1− ᾱtϵ, t,o)∥2

]
.

The term 1
1−ᾱt

acts as a time-dependent weight. For simplicity and training stability, many imple-
mentations (including the original DDPM) drop this weight, leading to the widely-used denoising
objective:

LV P (θ) = Et,a0,ϵ

[
∥ϵ− ϵθ(

√
ᾱta0 +

√
1− ᾱtϵ, t,o)∥2

]
. (17)

C Derivations for the Variance Exploding SDE

C.0.1 Derivation of the Forward Transition Kernel

Integrating the SDE from 0 to t gives at − a0 =
∫ t

0

√
d[σ2(s)]

ds dWs. The conditional distribution
pt(at |a0) is Gaussian.

• Mean: E[at |a0] = a0, since the stochastic integral has zero mean.

13

• Variance: By Itô isometry, assuming σ(0) = 0:

Var(at |a0) =

∫ t

0

(√
d[σ2(s)]

ds

)2

ds

 I =

(∫ t

0

d[σ2(s)]

ds
ds

)
I = σ2(t)I.

Thus, the transition kernel is pt(at |a0) = N (at;a0, σ
2(t)I).

• Generative Models:

– Reverse SDE: Integrated from t = T → 0:

dat = −g(t)2sθ(at, t,o) dt+ g(t) dW̄t.

– Probability Flow ODE: Integrated from t = T → 0:

dat
dt

= −1

2
g(t)2sθ(at, t,o).

C.0.2 Derivation of the VE Training Objective

As with the VP SDE, we train a neural network sθ to approximate the score of the conditional
distribution, ∇at

log pt(at|a0). The true conditional score is:

∇at log pt(at |a0) = ∇at

(
−∥at − a0∥2

2σ2(t)

)
= −at − a0

σ2(t)
.

In this case, it is common to train the network sθ to directly predict this score. The training objective is
a weighted score-matching loss, L(θ) = E[λ(t)∥sθ −∇at

log pt(at |a0)∥2]. The weighting function
λ(t) is crucial for balancing the learning objective across different noise levels t. A theoretically
motivated choice is λ(t) = g(t)2, but a simpler and often more stable choice is λ(t) = σ2(t). This
leads to the objective:

LV E(θ) = Et,a0,at

[
σ2(t) ∥sθ(at, t,o)−∇at

log pt(at |a0)∥2
]
. (18)

During training, we sample a data point a0, a time t, and noise ϵ ∼ N (0, I). We form at = a0+σ(t)ϵ
and compute the target score −(at − a0)/σ

2(t) = −ϵ/σ(t). The loss is then the weighted squared
error between the network’s output sθ(at, t,o) and this target.

D Derivations for the Critically Damped Langevin Dynamics

D.0.1 Derivation of the Forward Process Solution

Let the state be Xt = [a⊤t ,p
⊤
t]

⊤. The forward system (Eqs. 8-9) can be written in matrix form as
dXt = AXt dt+B dWt, where (for each dimension):

A =

(
0 1
0 −γ

)
, B =

(
0√
2γ

)
.

The solution to this linear SDE is Xt = eAtX0 +
∫ t

0
eA(t−s)B dWs. The matrix exponential is

eAt =

(
1 1

γ (1− e−γt)

0 e−γt

)
. The state Xt conditioned on X0 = [a⊤0 ,p

⊤
0]

⊤ follows a multivariate

Gaussian distribution N (µt,Σt).

• Mean: µt = eAtX0 =

(
a0 +

1
γ (1− e−γt)p0

e−γtp0

)
.

• Covariance: Σt =
∫ t

0
eA(t−s)BB⊤eA

⊤(t−s) ds.

14

D.0.2 Explicit Derivation of the CLD Covariance Matrix

Let u = t− s, so ds = −du. The integral becomes Σt =
∫ t

0
eAuBB⊤eA

⊤u du. First, compute the
inner matrix products:

BB⊤ =

(
0√
2γ

)(
0
√
2γ
)
=

(
0 0
0 2γ

)
.

eAuBB⊤ =

(
1 1

γ (1− e−γu)

0 e−γu

)(
0 0
0 2γ

)
=

(
0 2(1− e−γu)
0 2γe−γu

)
.

Integrand = (eAuBB⊤)eA
⊤u =

(
0 2(1− e−γu)
0 2γe−γu

)(
1 0

1
γ (1− e−γu) e−γu

)
=

(
2
γ (1− e−γu)2 2(1− e−γu)e−γu

2e−γu(1− e−γu) 2γe−2γu

)
=

(
2
γ (1− 2e−γu + e−2γu) 2(e−γu − e−2γu)

2(e−γu − e−2γu) 2γe−2γu

)
.

Now, we integrate each element of this matrix from u = 0 to u = t:

• (Σt)11 =
∫ t

0
2
γ (1 − 2e−γu + e−2γu)du = 2

γ

[
u+ 2

γ e
−γu − 1

2γ e
−2γu

]t
0

= 2t
γ −

3−4e−γt+e−2γt

γ2 .

• (Σt)12 = (Σt)21 =
∫ t

0
2(e−γu − e−2γu)du = 2

[
− 1

γ e
−γu + 1

2γ e
−2γu

]t
0
= (1−e−γt)2

γ .

• (Σt)22 =
∫ t

0
2γe−2γudu = 2γ

[
− 1

2γ e
−2γu

]t
0
= −[e−2γt − 1] = 1− e−2γt.

This completes the derivation of the covariance matrix for (at,pt) given (a0,p0).

D.0.3 Deriving the Marginal Transition Kernel and Training Objective

The score network sθ is a function of position at. Therefore, we need the marginal distribution
pt(at |a0). This requires marginalizing out the initial momentum p0, which is not part of the expert
data. We assume a standard prior p0 ∼ N (0, I). The distribution pt(at |a0) is the result of a linear
transformation of Gaussian variables, and is therefore Gaussian itself.

• Mean: E[at |a0] = Ep0
[a0 +

1−e−γt

γ p0] = a0.

• Variance: Using the law of total variance:

Var(at |a0) = Ep0
[Var(at |a0,p0)] + Varp0

[E[at |a0,p0]]

= (Σt)11I+Varp0

[
a0 +

1− e−γt

γ
p0

]
= (Σt)11I+

(
1− e−γt

γ

)2

Var(p0)

=
2

γ2

(
tγ + e−γt − 1

)
I

Let us define σ2
CLD(t) as this total scalar variance term. The final marginal transition kernel is

pt(at |a0) = N (at;a0, σ
2
CLD(t)I). This has the same form as the VE SDE kernel. Therefore, the

training objective derivation follows an identical logic.

LCLD(θ) = Et,a0,at

[
σ2(t) ∥sθ(at, t,o)−∇at log pt(at |a0)∥2

]
. (19)

15

	Mathematical Framework
	Stochastic Processes for Control
	Variance Preserving (VP) SDE
	Variance Exploding (VE) SDE
	Critically Damped Langevin Dynamics (CLD)

	Experimental Protocol
	Diffusion Policies on PushT
	Observation Space
	Action Space
	Diffusion Policy Architecture

	Phase 1: Training the Score Network
	Phase 2: Generating Actions at Inference Time
	Numerical Integration Schemes
	Euler Method (ODE Solver)
	Heun's Method (ODE Solver)
	Euler-Maruyama Method (SDE Solver)

	Results
	Quantitative Performance

	Conclusion
	Appendix
	Mathematical Framework
	The Forward and Reverse Processes
	The Probability Flow ODE

	Derivations for the Variance Preserving SDE
	Discrete noising
	Derivation of the Forward Transition Kernel
	Derivation of the VP Training Objective

	Derivations for the Variance Exploding SDE
	Derivation of the Forward Transition Kernel
	Derivation of the VE Training Objective

	Derivations for the Critically Damped Langevin Dynamics
	Derivation of the Forward Process Solution
	Explicit Derivation of the CLD Covariance Matrix
	Deriving the Marginal Transition Kernel and Training Objective

