A Comparative Study of Trading Using
Deep Q-Learning and Double Deep Q-Learning in Niche Markets

John Cao William Ekberg Nils Kuhn

Abstract

This study assesses the potential of Deep Q-
Learning (DQN) and Double Deep Q-Learning
(Double DQN) for trading in niche financial mar-
kets, characterized by lower liquidity and reduced
competition from algorithmic traders. We formu-
late the trading problem as a Markov Decision
Process (MDP) with varying action spaces, in-
cluding discrete allocation levels, binary market
participation, and incremental adjustments. Our
experiments, conducted on historical data from
the First North Growth Market and Novotek, as-
sess the profitability and stability of learned poli-
cies. The results provide insights into the suit-
ability of reinforcement learning for niche mar-
kets and highlight key trade-offs between different
MDP formulations. Our code can be found at our
Github repository. !

1. Introduction

Algorithmic trading accounts for a large portion of the
daily transactions within stock markets, with AI algorithms
already outperforming human traders and reshaping the
industry (Deng et al., 2016). As these algorithms become
more advanced, competing in major markets such as
technology stocks, the US market, and European exchanges
has become increasingly difficult. Leading quantitative
trading firms account for a significant portion of the daily
market trades, deploying machine learning and data-driven
methods to enable large-scale transactions on these highly
liquid markets. These automated transactions have dramati-
cally transformed the dynamics of the markets, resulting in
effects such as increased liquidity due to high trading rates,
and a rise in market correlations, where multiple assets
move in tandem to each other (Addy et al., 2024). To this
end, we hypothesize that less-explored areas of the market
may offer new opportunities where reinforcement learning
can provide a greater advantage compared to its deployment
in well-established sections. Such assets are characterized

'nttps://github.com/WilliamEkberg/
super—-trading-bot

by their low trading volumes and narrow audience of traders,
promising a more pristine trading environment which is
less dictated by the effects of mainstream automated trading.

Our goal is to investigate the efficacy of different RL algo-
rithms and MDP formulations in these niche markets. We
seek to gauge their performance in such environments, and
determine which ones yield the highest profits. Using the
results of this investigation, we aim to establish the potential
of RL to learn profitable strategies in niche, underutilized
markets. This paper is structured as follows:

* Section 2 gives a brief summary of related work within
this domain.

e Section 3 presents our methodology, outlining the
datasets, algorithms and MDP formulations.

 Section 4 details our experimental setup and simulation
results.

* Section 5 concludes this paper.

2. Related Work

There exists a large corpus of literature within the field of
learning-based trading. Modern methods mostly rely on
neural architectures designed for time-series modeling, such
as Recurrent Neural Networks (RNNs), LSTMs and Con-
volutional Neural Networks (CNNs) (Selvin et al., 2017).
Such methods are often trained using features extracted
from sliding-window observations over the asset data. The
Transformer architecture was later introduced to address
the common issues of RNNs, LSTMs and CNNs, such as
exploding/vanishing gradients and information loss due to
pooling (Wang et al., 2022). Reinforcement learning ap-
proaches to stock trading unify the prediction and allocation
steps, by modeling the market as an MDP in which an agent
can execute transactions. Deep Q-Learning and Double
Q-Learning are two popular algorithms in the RL setting,
serving as a basis for many frameworks (Théate & Ernst,
2021; Ning et al., 2021; Carta et al., 2021; Massahi & Ma-
hootchi, 2024).

https://github.com/WilliamEkberg/super-trading-bot
https://github.com/WilliamEkberg/super-trading-bot

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

3. Approach

We choose Deep Q-Learning (Mnih et al., 2013) and Double
Q-Learning (Mnih et al., 2013) as our main RL algorithms.
The environment in which the agent acts is a time series of
market data, which in its most basic form consists of the
closing prices of a given stock after each day. We augment
this information using another time series representing a re-
lated market index to enrich the state representation. Given
our environment, we define the MDP for the trading task as
follows:

* Action Space A: We investigate three definitions of
the action space .4, each governing how the agent allo-
cates percentages of its portfolio to the market:

1. Discrete Allocation Levels: The agent selects
from a fixed set of investment percentages:
{0%,10%, 20%, ..., 100%}.

2. Binary Market Participation: The agent
chooses between staying out of the market (0%
invested) or being fully invested (100% invested).

3. Incremental Adjustment: The agent can in-
crease, decrease, or maintain its current invest-
ment level in increments of 10%.

Each action space represents a different trade-off be-
tween flexibility and complexity, impacting the agent’s
learning dynamics and portfolio performance, as dis-
cussed in section 3.1.

« State Space S: Given a set window of size k, we define
the state space as the set of windows of the same size
trailing each closing price in the time series, i.e. for an
entry x;, the corresponding state s; = {x¢_g, ..., T+ }.
We pad any negative time steps by copying zo. The
raw price values at each time point are then augmented
by transforming each entry in a window as

l”; = G(It - It—l), (nH

where x} is the transformed value of x; and ¢ denotes
the sigmoid function. The difference between subse-
quent values acts as a finite-difference approximation,
providing information to the model about the direction
of the market at each time step. To mitigate large dis-
parities between inputs, the sigmoid function is applied
to squeeze the value of the state variables between 0
and 1. Furthermore, we apply the same procedure to an
index related to the asset we aim to predict. This addi-
tional information is then concatenated to the state vec-
tor to encode insights into larger market movements.

A slight modification to the state space is made for the
action space denoted “Incremental Adjustment”. In
that case, it might be important for the agent to know

its current investment position, as it cannot fully exit
or enter the market within a single day. Therefore, the
current investment percentage is added to the state
space.

e Rewards R: The agent’s reward is determined by
the change in its portfolio value from the previous to
the current day. This change is then normalized by a
hyperparameter 77 and squeezed into a value between 0
and 1 using Tanh.

portfolio change

ry = tanh(
n

) @)
For action space denoted “Discrete Allocation Levels”,
the reward is modified by incorporating a risk aversion
function. This modification incentivizes the agent to
adopt a more conservative allocation when uncertainty
about the portfolio’s movement is high. In that case, the
agent receives a higher expected reward for choosing
lower investment percentages. This should reduce the
variance of it’s performance and ensures that the agent
makes use of all its actions. The exact formulas are
detailed in section 3.2.

Dynamics P: For a given time ¢, the transition dynam-
ics are defined as

P(st+1|st,at) = P(St+1|8t) =1. (3)

In other words, the states transition deterministically
from one time step to the next, no matter the action
of the agent at the previous time step (which is what
a real-world scenario would look like, assuming that
the volume being traded is low enough to be negligible
in relation to the rest of the market). In the case of
“Incremental Adjustment”, the invested percentage in
the next state is determined by the current action but
dynamics are still deterministic.

The MDP is defined in these terms to compare different
strategies of the agent. The first action space, “"Discrete
Allocation Levels,” provides the agent with maximum
flexibility in managing its portfolio, closely resembling the
options of an actual investment manager who can invest in
only a single stock. As the agent learns Q-values, it would,
in theory, converge to investment allocations of either 0% or
100%. A brief proof supporting this behavior is presented
in the following lemma.

Lemma 1 Assume that R(s¢, 100%) > 0, and the portfolio
allocation percentage 0 < p < 100%. Then

Q™ (s,100%) > Q™ (s¢,p), Vst € S. 4)

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

Proof:

Qﬂ(St, 100%) = R(St, 100%) + '—YVW(St_A'_l)
Q7 (8¢,100%) > pR(st, 100%) + YV ™ (8¢41)

Q" (s¢,100%) > Q7 (s¢,p) B (5
Lemma 1 show that if the expected reward of investing
into the market is greater than 0, then the agent maximizes
it’s expected reward by investing it’s total portfolio. If
R(st,100%) < 0, than it’s trivial that staying out of the
market is the only option that prevents the agent from the
loss, as it is not able to invest a negative percentage. If
R(s,100%) = 0, there is no difference between the ac-
tions of the agent. Therefore, to maximize it’s expected
reward the only acceptable options become 0% and 100%.

3.1. Action and State Space Design

The second action space, ”Binary Market Participation,” was
motivated by Lemma 1. Reducing the number of actions
the agent needs to learn might additionally enhance perfor-
mance. When using this action space, we use 7 = 150 for
the reward. In experiments with both Discrete Allocation
Levels and Binary Market Participation, we observe that
the agent tend to engage in what is known as ”day trading,”
where the agent attempts to predict whether the market will
rise or fall the following day. In a real portfolio management
scenario, however, one might prefer the agent to adopt a
more long-term strategy, which would be easier to interpret.
The “Incremental Adjustment” strategy aims to encourage
this behavior. Under this approach, the agent is restricted to
buying or selling only 10 percent of its portfolio at a time.
Additionally, the agent has the option to hold its current
position. This smaller adjustment in portfolio allocation
could potentially reduce the variance of the performance.

Since the defined action space requires the agent to take at
least 10 days to fully enter or exit the market, the agent’s
current portfolio becomes crucial information for determin-
ing the next step. As a result, we incorporated the past
investment percentage into the current state of the MDP.
Additionally, due to the altered behavior associated with
this strategy, we adjusted the reward function slightly, using
n = 40.

Using this defined MDP, the goal is for the agent to learn
a trading policy based on past market data, which can then
be generalized to novel data from the same asset. The
customized DQN algorithm tailored to our MDP is provided
in Algorithm 1.

Remark 1 The implementation of Double-DQON is iden-
tical to DQN, with the exception that y; = 1(¢;,a;) +
YQo(¢pj+1,arg maxy,). ©

Remark 2 The design of our state space was inspired

Algorithm 1 Deep Q-Learning For Stock Trading

Initialize replay buffer D with capacity N,
Initialize neural network Qg,
Initialize target neural network Qg-,
Setd =6~
for episode = 1, M do
Load the first time window from the asset data w;
Pre-process wy to obtain ¢; = ¢(wn).
fort =1,Tdo
With probability € select a random action a,
otherwise select a; = arg max, Qg(d(wy), a)
Execute action a; in emulator and observe reward r;
and state wy41
Store transition (¢y, a¢, ¢, ¢r41) in D
Sample random minibatch of
(¢4, 04,75, ¢j+1) from D
r(¢;,a;), for terminal ¢4

transitions

Set Yi =

r(¢j,a;) +ymaxy Qo(dji1,0a’), otherwise

Perform a gradient descent step on (y; —
Qo (d5,a;))
Every C steps set 0~ = 0
end for
end for

by the method outlined in https://github.com/
pskrunnerl4/trading—bot/tree/master. o

3.2. Risk Aversion Penalty

In our initial tests, the agent learned to select only up to
three distinct actions for interacting with the MDP. The
underlying idea for partial investment in the market is to
reduce risk. To address both the practical and theoretical
challenges, we implemented a risk aversion function before
squeezing the reward to a range between 0 and 1.

portfolio change

150 1+1 (©)

Trisk aversion — — eXp[*

r= tanh(2 * Trisk aversion))

Risk aversion is implemented using a concave function, such
as f(x) = —e™*, which induces heavy penalties for low
rewards while being robust to outliers in the high reward
domain. This approach discourages excessive risk-taking
by disproportionately punishing negative outcomes. Adding
an offset of 1 ensures that the reward is zero if the portfolio
does not change.

3.3. Datasets

The datasets used in this study can be viewed as the envi-
ronment in which the agent operates. We assume that the

https://github.com/pskrunner14/trading-bot/tree/master
https://github.com/pskrunner14/trading-bot/tree/master

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

agent’s actions, such as buying or selling a stock, do not im-
pact the market. This assumption is reasonable since, even
in smaller markets, the total trading volume significantly ex-
ceeds the agent’s trades. The initial portfolio volume of our
agents is 10,000 SEK (Swedish Krona), roughly equivalent
to $1,000 based on the exchange rate as of March 17, 2025.

The datasets used in this study are as follows:

¢ FirstNorth Growth Market: The FirstNorth Growth
market encompasses roughly 550 traded nordic compa-
nies (fir, 2025). We use its closing value over the past
6 years for training and validation. The first 5 years
(2019-2024) are used as training data, and the last year
(2024-2025) as test data. The estimated trading volume
of this asset is around 30 million dollars per day, based
on the combined trading volume of its underlying as-
sets. Both the training data and the test data can be
seen in Figure 1.

* Novotek: A Swedish IT and automation company with
a low daily trading volume of around 30k dollars (nov,
2025). The same split into 5-year training data (2019-
2024) and 1-year test data (2024-2025) was made for
Novotek. Both the train data and the test data can be
seen in Figure 2.

* OMX 30: Sweden’s largest stock index, serving as a
useful indicator of the country’s economic performance
(omx, 2025). This dataset, obtained from Yahoo Fi-
nance, was used to provide additional context to the
state representation.

First North Growth Market

e 1 [—
i WMM& N
f !
E 25 ‘/‘VW v \r\
3 20 Jud A
H M i\ v
s .
A
\
w Na/’/ LI \ww-'“”\mw\)
\
Q\‘e\ \;:\ \F\ \»\ \;:\ \»\
o & & & & &
First North Growth Market
N f——
B0 1 N
AR \
- UL R /”\M h
1 M /| ! 1
Bus] M| A (AL W
AR RVA A
M w \ [V \ I A
P 1\ MY \¥ [J\ I \
E Vi, | w“q‘ ! v‘ Y \./
Yol M
20 R |
W V

Figure 1. The train data (above) and the text data (below) of the
First North Growth Market.

By holding the stock for the full duration with an initial
investment of 10,000 SEK (Swedish kronor), the starting

Novotek

— Stock position

o ,u
J/AW/ M’M
» JM'”M Vl\ rpwlf"(m
s

g s S s s N
& & & &

v s o &

$ $ &

Stock Pr
g

Novotek

A o |
[\ \ A

WLENTA
R T (
) | J \ "

‘F’) MM f‘ A[

Stock Price

Figure 2. The train data (above) and the text data (below) of
Novotek.

capital of our agents, one would have generated the follow-
ing profits.

* FirstNorth growth market within 1 year: -249.64 SEK
* FirstNorth growth market within 5 years: 1246.89 SEK
* Novotek within 1 year: 4440.00 SEK

* Novotek within 5 years: 8068.20 SEK

3.4. Parameterizing the Q-Function using a
Transformer

In standard Deep Q-Learning, the Q-function is parameter-
ized using feed-forward multi-layer perceptrons. In addition
to the standard approach, we implement a transformer vari-
ant of the Q-function. This involves modifying the state
space by representing the observation as a sequence of fea-
ture embeddings derived from each time step within the
sliding window. This experimental implementation is mo-
tivated by the strong time-series modeling capabilities of
Transformers. We intend to investigate whether the attention
mechanism can help the model generalize better compared
to plain feed-forward architectures and potentially lead to
higher returns.

4. Experimental Results
4.1. Experimental Setup

For our experiments, we implemented a five-layer feed-
forward neural network for both DQN and Double-DQN
and a transformer-based model. The neural network
architecture consists of an input layer corresponding to

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

Dataset: Fisthortn.csv | Action Space: all_or_nothing
Portfolio Value

Dataset: Novotek.csv | Action Space: al_or_nothing
Fortfolio Value

H H g
H H H

pontoto value
§

double-dgn: ROI -0.03

tdgn: RO 000

Sortino 023 Sortino 0.07

oo e " "
4050, == Wonsturerrmamn). 1
Buy and hold ,“‘,"N’”{ . :‘h) lv"
13000 Do i ““‘l“"h‘nl"l(' LY 1
b " Wiy 1

N
A

Transformer: ROL0.15.
Sortino 0157

double-dgn: R01L.0.28
Sortino 055

tdgn: ROI0.16.
Sortino 0.5

Standard Deviation Between Runs

Standard Deviation Between Runs

— dan Standard Deviaton
500 — double dan standard Deviat
o

Standard Deviaton

2500 [— b standard Deviaton
— double dan tandard Devition

oay

Dataset: Frsthorth.csv | Action Space; all_10%_steps
Portrolio Value

oy

Dataset: Novotek.csv | Action Space: all_10% steps
Portfolio Value

1

!

N “u

o Y M rstomer: b1 000
T 8%

Gouble-dap: ROI-0.00
Sorting 0:02

tdgn: RO -0.01
Sartino 013

Transformer: ROI 0.19.
Sortine 113

double-dgn: ROI 0.24
Sortino 152

tdgn: ROI 015
Sortine 0:98

Standard Deviation Between Runs

Standard Deviation Between Runs,

Standard Deuistion

o3y

Dataset: FirstNorth.csv | Action Space: 10% steps.

oay

Dataset: Novotek.csv | Action Space: 10% steps

Potilo alue Porttolo Vatue
1os0 — o .
=T I o
sooo LI — P mean e n !
== havananaa .
10200 y TWAEL 5 \ J
& | N e b Mg
- A e { A N v, P
1] Bl iy 1
. s IWATAENT -
H H Y 1 i
2 2 1) 1
2 £ 12000 ™M
H H
-~ om0
o anstormer: 1000 doubie-dan: 801 001 g po1-0.02 oo Tanstomer. 801017 soublg-dgn: 701026 cagn 01026
Shitho 553 Lot 557 Y Shinids Tim 138 Tt 535

‘Standard Deviation Between Runs

Standard Deviation Between Runs

Standard Deviation

oay

oay

Figure 3. Mean portfolio values and their standard deviations under the different polices learned by the respective RL algorithms. The left
column shows the results on the First North dataset, while results for Novotek is shown in the right column.

the observation space, followed by three hidden layers of
size 40, and an output layer corresponding to the action
space. The observation space is represented as a vector of
size 2(window size — 1), with the first half corresponding
to the current dataset and the second half to OMX30.
In the case of “Incremental Adjustment,” an additional
value representing the current investment percentage is
included. The action space consists of 11, 2, or 3 discrete
actions, depending on the strategy. Each layer of the
feed-forward network consists of a fully connected linear
layer, ReLU activation functions, and layer normalization.
The hyperparameters were fine-tuned for each method to

ensure effective learning while preventing overfitting to the
training data. The transformer model was configured with 3
layers and 2 attention heads. Due to having a higher number
of parameters, it was trained for three epochs, whereas
the feed-forward neural network was trained for seven
epochs. This distinction is crucial, as transformers tend
to overfit more quickly due to their parameter complexity.
All agents use discount factor of v = 0.95 and an epsilon
greedy exploration strategy. For the “Binary Market
Participation” strategy with the feed-forward network,
the exploration parameters are set as follows: an initial
exploration rate of 0.5, an exploration decay factor of

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

0.995, a minimum exploration rate of 0.05, and a learning
rate of 107%. Given the higher parameter count in the
transformer model, we reduce the learning rate to 10-6
and set the initial exploration rate to 1 to accommodate the
lower number of training epochs. For the Binary Market
Participation and Incremental Adjustment action space, we
increased the initial and minimum exploration rate, reduced
the decay rate and increased the learning rate slightly.
These modifications account for the larger state space in
“Incremental Adjustment” and the broader action space in
“Discrete Allocation” Levels.

Test novotech

— Stock Position
a By
v sl

]
. i g‘[\ by,
: ER i
&t

A

‘ "oy

. /

ol

Portfolio %

”

Figure 4. Behavior of an agent in "Discrete Allocation Levels

Test novotech

— Stock Position

v sell

Pu w’iL“*"x \ H\
o abewd T AJK*J“
v

Figure 5. Behavior of an agent in ”Binary Market Participation”

Figure 4 to 6 illustrate the behavior of agents across differ-
ent action spaces, highlighting how the available actions
influence trading decisions. The agent exhibits a clear ten-
dency toward day trading, particularly in the Binary Mar-
ket Participation” setting, as shown in figure 5. In contrast,
the “Incremental Adjustment” strategy, depicted in figure 6,
constrains the agent to adopt a more long-term investment
approach. “Discrete Allocation Levels” provide the greatest
flexibility, allowing the agent to make a broader range of

Test novotech

— Stock Position
4 Buy
v sell

[\‘M\) et |
65 IM&WWJ F W‘\E}I\w

. ' ™

Portfolio % Allocation

Figure 6. Behavior of an agent in ”Incremental Adjustment”

decisions. Notably, the agent only occasionally exits the
market entirely under this strategy.

The experiment was conducted by running 11 trials for each
agent. The averaged results of all the runs are presented
in Figure 3 (the upper part of each graph). The standard
deviation of the results across all runs was calculated for
each time step and displayed below the averaged results
to provide an indication of the agents’ consistency. The
Return on Investment (ROI) was calculated for each run and
averaged to compare the expected performance of the agent.

Net Profit

ROI =
Cost of Investment

®

The Sortino Ratio is a risk-adjusted performance measure
that takes into account the standard deviation of negative
rewards. For simplicity, we assumed a risk-free rate of 0.
The Downside Deviation measures the standard deviation
of each run, but only considers negative rewards. This
metric is particularly useful, as large positive rewards do not
negatively affect the agent’s performance and should not be
penalized. The Sortino Ratios across all runs were averaged
to compare the expected performance of the agent.

. . Annual Reward — Risk-Free Rate
Sortino Ratio = - — 9
Downside Deviation

Downside Deviation = Z(max(o, —R;))? (10)
i=1

1
n

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

4.2. Results

Table 1. Comparison of ROI and Sortino Ratios for FirstNorth

Action Space Method ROI Sortino
(%) Ratio
None Buy and hold -0.025 -0.17
Binary DQN 0.00 0.07
Binary Double DQN -0.03 -0.23
Binary Transformer 0.00 0.06
Discrete DON -0.01 -0.13
Discrete Double DQN 0.00 0.02
Discrete Transformer 0.00 0.07
Incremental DQN -0.02 -0.17
Incremental Double DQN -0.01 -0.07
Incremental Transformer 0.00 0.02

Table 2. Comparison of ROI and Sortino Ratios for Novotek

Action Space Method ROI Sortino
(%) Ratio
None Buy and hold 0.44 1.53
Binary DQN 0.16 0.59
Binary Double DQN 0.28 0.98
Binary Transformer 0.15 0.57
Discrete DQN 0.15 0.98
Discrete Double DQN 0.24 1.52
Discrete Transformer 0.19 1.13
Incremental DQN 0.16 0.83
Incremental Double DQN 0.26 1.22
Incremental Transformer 0.17 1.18

First North Growth Market:

Buy-and-hold baseline: The baseline strategy of simply
buying and holding the index throughout the year 2024-2025
would have resulted in a slight loss of 2.5% in portfolio

value, as shown in Table 1.

Action-Space Comparisons:

e Binary space:

As shown in figure 3 (top-left), the RL agents occasion-
ally avoided deeper downward dips. Both the DQN and
the transformer-based models outperformed the price
of the underlying asset. The ROI for Double-DQN
(-0.03) was close to the buy and hold ROI at -0.025
compared to the Transformer and DQN with an ROI
of 0.00 seen in table 1. Additionally, the transformer
model had a slightly lower standard deviation than both
DQN and Double-DQN for this strategy.

Discrete Allocation Levels: As seen in Table 1,
both Double-DQN and the Transformer-based model
achieved an ROI of 0.00%, matching or slightly im-
proving on DQN’s -0.01%. The Transformer-based
policy had a modest improvement in the Sortino Ra-
tio over DQN, suggesting it better handled downside
volatility. Also the standard deveation of both the trans-
former based model and DQN was slightly lower then
for double-DQN as shown in figure 3 (middle-left).
However, all the models outperformed the underlying
asset.

Incremental: Using the incremental action space, ta-
ble 1 shows that the Transformer-based model per-
formed the best, with a 0.00% ROI and a small positive
Sortino Ratio of 0.02, indicating it managed to avoid
significant drawdowns. By contrast, DQN and Double
DQN hovered slightly below zero with -0.02% and
-0.01% respectively. In terms of standard deviation the
Transformer-based model had a higher value compared
to DQN and double-DQN.

Novotek stock:

Buy-and-hold baseline: The baseline strategy of buying
and holding the index over the year 2024-2025 would have
resulted in a profit of 44% of portfolio value seen in table 2.

e Binary: As shown in figure 3 (top-right), the models
captured portions of Novotek’s strong upward trend
even though they traded into and out of the market.
According to Table 2, Double-DQN performed the
best with a final ROI of 0.28%, compared to 0.16%
for DQN and 0.15% for the Transformer. Double-
DQN exhibited a better Sortino Ratio of 0.98 than
DOQN or Transformer, although it had a slightly higher
standard deviation between runs. None of the models
outperformed the buy-and-hold baseline of 0.44%.

¢ Discrete Allocation Levels: In Table 2, Double DQN
again achieved the highest ROI of 0.24% among RL ap-
proaches, followed by the Transformer-based method

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

with 0.19% and DQN at 0.15%.The Double-DQN
method also had a Sortino Ratio of 1.52, which is
almost the same as the buy-and-hold Sortino ratio of
1.53. The Transformer’s Sortino Ratio of 1.13 was
also quite competitive, indicating it handled downside
volatility well, but it was still below the buy-and-hold
ratio of 1.53. As shown in Figure 3 (middle-right), all
three RL methods had reduced variance compared to
an all-in strategy, but they gave up some absolute gains
in a strongly bullish market.

Incremental: Using the incremental strategy, the
agents captured large portions of the upside while at
the same time keeping the standard deviation down.
Table 2 shows Double-DQN at 0.26% ROI, DQN at
0.16%, and the transformer-based method at 0.17%.
Although none matched the 0.44% buy-and-hold re-
sult, the risk-adjusted performance was relatively good.
Double DQN had a Sortino Ratio of 1.22, suggest-
ing it avoided some significant drawdowns. Figure 3
(bottom-right) shows that the Transformer’s standard
deviation among runs was somewhat lower than the
other RL methods, suggesting a more stable policy
learning but with slightly lower average returns.

4.3. Holistic Analysis

Noticeable patterns to be extracted from the above
analysis of the results include the observation that
Double DQN generally delivers more robust perfor-
mance, validating prior findings that it mitigates over-
estimation bias and offers better risk-adjusted returns.
Transformer-based Q-learning often matched or sur-
passed DQN in downward or more volatile conditions.
This supports the superior time series modeling capa-
bilities of the transformer architecture, which in this
case might have enabled the model to learn a more opti-
mal Q-function. Finally, action-space design (Discrete
Allocation Levels, Binary Market Participation, or In-
cremental Adjustment) significantly impacts both re-
turns and volatility control. For downward and volatile
markets, e.g the FirstNorth index, partial or incremen-
tal exposures help preserve capital, shielding against
overly negative ROIs. In a strongly rising market, how-
ever, buy-and-hold remains hard to beat in terms of
absolute ROL.

5. Conclusion

This study demonstrates that simpler reinforcement
learning methods hold potential for trading in niche
markets characterized by lower daily trading volumes
and reduced algorithmic competition. We showed that
incorporating risk aversion is crucial for enabling full
portfolio management flexibility, whereas in a reduced
action space, pure reward signals may suffice. Through

numerical experiments, we demonstrate that our meth-
ods effectively protect portfolios in declining markets
while capitalizing on opportunities presented by up-
ward trends.

6. Team Contribution

Our team collaborated constructively, supporting each
other throughout the project. We all contributed to de-
veloping the initial trading agent. John set up the new
datasets and expanded the observation space for the
final version. William focused on clear data visualiza-
tion, selecting datasets, choosing markets, and ensuring
all experiments could be executed together. Nils imple-
mented the agent’s action spaces and explored different
subsets of parameters for the models. Additionally, we
all contributed to writing the report and creating the
poster, working collaboratively to support one another
throughout the process.

References

First north all-share sek, 2025. URL
https://www.nasdaq.com/
european-market—-activity/indexes/
firstnorthsek?id=SE0001718701.

Novotek, 2025. URL https://www.novotek.
com/.

Omx 30, 2025. URL https://finance.yahoo.
com/quote/%$5EOMX/.

Addy, W. A., Ajayi-Nifise, A. O., Bello, B. G., Tula,
S. T., Odeyem, O., and Falaiye, T. Algorithmic
trading and ai: A review of strategies and market
impact. World Journal of Advanced Engineering
Technology and Sciences, 11(1):258-267, 2024.

Carta, S., Ferreira, A., Podda, A. S., Recupero, D. R.,
and Sanna, A. Multi-dqn: An ensemble of deep g-
learning agents for stock market forecasting. Expert
systems with applications, 164:113820, 2021.

Deng, Y., Bao, F,, Kong, Y., Ren, Z., and Dai, Q. Deep
direct reinforcement learning for financial signal
representation and trading. IEEE transactions on

neural networks and learning systems, 28(3):653—
664, 2016.

Massahi, M. and Mahootchi, M. A deep g-learning
based algorithmic trading system for commodity

futures markets. Expert Systems with Applications,
237:121711, 2024.

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A.,
Antonoglou, I., Wierstra, D., and Riedmiller, M.

https://www.nasdaq.com/european-market- activity/indexes/firstnorthsek?id=SE0001718701
https://www.nasdaq.com/european-market- activity/indexes/firstnorthsek?id=SE0001718701
https://www.nasdaq.com/european-market- activity/indexes/firstnorthsek?id=SE0001718701
https://www.novotek.com/
https://www.novotek.com/
https://finance.yahoo.com/quote/%5EOMX/
https://finance.yahoo.com/quote/%5EOMX/

A Comparative Study of Deep Q-Learning and Double Deep Q-Learning in Niche Markets

Playing atari with deep reinforcement learning.
arXiv preprint arXiv:1312.5602, 2013.

Ning, B., Lin, F. H. T., and Jaimungal, S. Double deep
g-learning for optimal execution. Applied Mathe-
matical Finance, 28(4):361-380, 2021.

Selvin, S., Vinayakumar, R., Gopalakrishnan, E.,
Menon, V. K., and Soman, K. Stock price prediction
using Istm, rnn and cnn-sliding window model. In
2017 international conference on advances in com-
puting, communications and informatics (icacci), pp.
1643-1647. IEEE, 2017.

Théate, T. and Ernst, D. An application of deep rein-
forcement learning to algorithmic trading. Expert
Systems with Applications, 173:114632, 2021.

Wang, C., Chen, Y., Zhang, S., and Zhang, Q. Stock
market index prediction using deep transformer
model. Expert Systems with Applications, 208:
118128, 2022.

